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A B S T R A C T

A new method was developed for reconstructing the geometric structure of large plants such as trees at the leaf-
scale by utilizing terrestrial LiDAR data. The primary goal of the work was to develop a feasible means for
accurately and rapidly reconstructing or “digitizing” entire trees in order to specify the position, orientation, and
size of every leaf in digital tree models that provide geometric inputs for high-resolution biophysical models or
analyses. As with any optical measurement technique, a primary challenge is accurately accounting for plant
matter that is occluded from view of the sensor. The present method is termed “semi-direct” because it uses a
triangulation procedure to approximately directly reconstruct as many leaves as possible that are in view of the
scanner. For plant matter obstructed from view, a statistical backfilling procedure was used to add additional
leaves such that the three-dimensional distribution of leaf area and orientation of the reconstructed plant
matched that of the actual plant on average. In a best case scenario such as when leaf density is low, nearly all
leaf area is directly reconstructed from the scan and the branch and clumping structure is preserved within the
reconstruction. In the worst case scenario such as when the leaf density is very high and nearly all leaves are
occluded from view of the scanner, only a small fraction of leaves can be directly reconstructed, but at a
minimum the distribution of leaf area and the leaf angle distribution across the reconstructed plant will be
consistent with that of the actual plant. Unlike many other approaches, the present method does not rely on the
woody matter of the plant to provide a skeleton for reconstruction, and can be used in dense plants where little
woody matter is visible from the scanner.

1. Introduction

Leaf-level measurements of many biophysical processes (e.g., ex-
change of water vapor, CO2, and heat) have become routine, yet scaling
these processes up to entire plants and canopies remains a considerable
challenge, as performing direct measurements of biophysical processes
at these scales if often not possible (Amthor, 1994; Ehleringer, 2000).
Instead, our understanding of whole-plant and -canopy biophysical
processes typically relies on models that attempt to aggregate in-
formation originating at the leaf scale into plant communities. Such
models make simplifying assumptions that focus on bulk canopy be-
havior, such as “big leaf” or “multilayer” models (Sinclair et al., 1976;
Amthor, 1994; DePury and Farquhar, 1997). Given the scale of canopy
representation in these models, inputs are also typically bulk values
specified at or near the canopy scale.

With the continued exponential increase in computational perfor-
mance (Moore, 1965), we are now in a position where direct scaling
from leaves to canopies (i.e., representing every leaf in a canopy) is
within reach. High-resolution, three-dimensional models are becoming
increasingly common, and are able to represent an incredibly wide

range of scales (e.g., Bailey et al., 2014, 2016; Bailey, 2018). The next
generation of biophysical models are likely to shed new light on how
processes at various scales interact to determine plant behavior over
communities.

A considerable challenge in the utilization of such models is the
accurate specification of geometric inputs. As the goal of these models
is to explicitly represent heterogeneity at various scales and its impact
on canopy-level processes, we must be able to accurately measure and
input this geometry into the models (Vos et al., 2010; Sarlikioti et al.,
2011). Manual measurement of canopy geometry is far too time con-
suming to be useful at providing canopy-level inputs at the leaf scale.

Remote sensing techniques have provided a means for rapidly
measuring and recording the full three-dimensional geometry of plants
for use in computer models (i.e., “digitizing”). These techniques make a
compromise between level of detail and the size of system that can be
represented. Various methods are available to extract plant-scale
structural parameters such as crown diameter and height from remote
measurements (e.g., Morsdorf et al., 2004; Henning and Radtke, 2006;
Rosell et al., 2009; Yang et al., 2013). The clear advantage of these
approaches is that they can be used to rapidly measure large spatial
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scales, but they do not provide detailed information at the sub-plant
scale that may be needed for high-resolution modeling. At the opposite
end of the spectrum, methods are also available to measure the full
plant structure at the leaf scale. Early work by Sinoquet et al. (1998)
used an electromagnetic instrument to directly record the position and
orientation of individual foliage elements, which is limited by the need
to manually place the instrument next to each leaf. Previous workers
have also been relatively successful in using photographic methods to
directly reconstruct small plants where nearly all foliage is in direct
view of cameras placed on the perimeter of the plant (e.g., Delagrange
and Rochon, 2011; Li et al., 2013; Pound et al., 2014). However, these
methods cannot be used directly with large plants where a significant
portion of plant area is occluded from view.

For large plants such as trees, the problem of measuring the full
vegetative structure is complicated by the sheer size of the plants,
number of leaves, and potentially large fraction of leaves occluded from
view of a remote sensor. If only the woody structure of the tree is of
interest, the occlusion problem becomes much less substantial.
Numerous methods have been developed based on laser scanning that
use the woody structure of the plant as a road map through laser
scanning point clouds (e.g., Binney and Sukhatme, 2009; Xu et al.,
2007; Côté et al., 2009; Raumonen et al., 2013; Hackenberg et al.,
2015; Mèndez et al., 2016). Starting at the trunk, branches can be
traced throughout the tree using point connectivity information, which
can then be used to generate a reconstruction of the woody tree
structure.

If reconstructions of trees at the leaf scale are desired, the occlusion
problem must be somehow confronted. Often this involves measure-
ment of the overall tree structure and making reasonable guesses as to
where individual leaves should be placed. For example, Shlyakhter
et al. (2001) used an aggregate approach based on photographic
methods to determine the general shape of tree crowns, and then used a
structural model to create a simulated tree that fit within the measured
crown shape. In cases where vegetation is sparse or leaf-off measure-
ments are available, a reconstruction of the woody structure can be
used as a “skeleton” to guide the placement of individual leaves (e.g.,
Xu et al., 2007; Côté et al., 2009, 2011). Delagrange and Rochon (2011)
demonstrated the possibility of adding leaves to the branch skeleton
using allometric relations, but this method relies on empirical relations
that may or may not be generally applicable.

Evaluations of plant reconstruction methods are most commonly
performed using visual comparisons, as it is difficult to quantitatively
evaluate their accuracy given that measurements of the true plant
structure is typically not available. While many reconstruction methods
produce tree models that appear visually reasonable, it is unclear
whether the reconstructions are accurate enough for use in detailed
model simulations. Côté et al. (2009) noted that reconstructed plants
should be “radiatively consistent” with the actual plants, meaning that
radiative transport through the reconstructed plants should be ap-
proximately equivalent to that of the actual plants. Côté et al. (2009)
were able to produce tree reconstructions for Pinus species that de-
monstrated radiative consistency based on measurements of radiation
reflection and transmission.

In this work, we develop a “semi-direct” method that uses terrestrial
LiDAR data to reconstruct large plants such as trees that match the
three-dimensional leaf area and angle distribution of the actual plant
being reconstructed. The method is semi-direct in that it directly re-
constructs the majority of leaves that are in direct view of the LiDAR
scanner. The method then uses a statistical backfilling approach to re-
create occluded leaves in a manner that ensures the overall leaf area
and angle distribution matches that of the actual plant. Since the re-
constructed leaf area and angle distributions are consistent with the
actual trees, the reconstructions are applicable for use in model simu-
lations of processes such as light interception.

2. Method description

2.1. Terrestrial LiDAR scanning

Typical terrestrial LiDAR scanning instruments are compact units
that can be mounted on a tripod, and are used to measure the distance
to surrounding objects. The instrument emits a large number of con-
centrated pulses or beams of radiation into the surrounding spherical
space. In the event that a beam intersects solid matter, some fraction of
the radiation beam is scattered back to the instrument. Using various
methods such as time of flight, the instrument can calculate and record
the distance to beam-object intersection points. The direction in which
the pulse was sent is also known by the instrument, which allows cal-
culation of the Cartesian (x,y,z) position of beam-object intersection
points (Fig. 1a). By emitting millions of beams into the surrounding
space, the instrument effectively maps the three-dimensional geometry
surrounding the scan location.

Terrestrial LiDAR instruments generally do not emit beams at
random, rather they perform a systematic scan of the surrounding
spherical space. Most commonly, instruments discretely scan a certain
range of zenithal angles while continuously rotating between a range of
discrete azimuthal angles (Fig. 1b). This creates an approximately
uniform two-dimensional grid of points in spherical space. The scan

Fig. 1. Schematic depiction of terrestrial LiDAR scanning. (a) Cartesian coordinate
(x,y,z)hit of hit point, and corresponding spherical coordinate (θ,φ). (b) Scanning pattern
in spherical coordinates, illustrating the range of scan zenithal angles (θmin through θmax)
and azimuthal angles (φmin through φmax).
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resolution is given by the number of discrete scan zenithal directions Nθ
(# rows), and the number of discrete scan azimuthal directions Nφ (#
columns), with Nθ×Nφ being the total number of points in the scan.

2.2. Scan point triangulation

The basic idea behind the plant reconstruction methodology pre-
sented in this work is to connect adjacent scan hit points to form tri-
angles, then identify continuous triangle groups that reconstruct in-
dividual leaves. The triangulation methodology is described in detail by
Bailey and Mahaffee (2017b), and a brief description is repeated below.

The triangulation algorithm first seeks to construct a two-dimen-
sional grid of scan points in spherical space. This grid consists of a (θ,φ)
coordinate for each ray sent by the scanner (Fig. 1). This creates a two-
dimensional plane of points that can be triangulated (Fig. 2). Bailey and
Mahaffee (2017b) suggested an efficient triangulation algorithm that
can be used when the indices of the scan points in the 2D spherical grid
are recorded by the scanner. This allows for the construction of a “scan
table” in which rows correspond to each scan zenithal angle, and col-
umns correspond to each scan azimuthal angle. Given this table, it is
relatively straightforward to form triangles between adjacent points in
the uniform grid since scan point connectivity is already known. For
instruments that do not directly record this information (such as the
instrument used in this work), standard 2D Delaunay triangulation can
be used (Press et al., 2007), which has the trade-off that it requires more
computational effort since point connectivity is not initially known.
Triangles exceeding a size or aspect ratio threshold are rejected to
prevent erroneous triangles from being formed, such as triangles that
connect adjacent leaves. Since each triangle vertex corresponds to a
laser hit point, the (x,y,z) coordinates of the vertices are also known.
The resulting triangulation gives a set of triangles that follow the sur-
faces of individual leaves that are in view of the scanner.

2.3. Direct leaf surface reconstruction

Neighboring triangles are connected to form continuous groups,

where each group presumably corresponds to all or a portion of an
individual leaf's surface. To accomplish this, an algorithm is applied
that is similar to a traditional “flood-fill” algorithm (e.g., Lee, 1987),
except that it connects adjacent triangles instead of adjacent pixels
(Fig. 2). For each triangle, any neighboring connected triangles are
identified, where a “connected” triangle is defined as a triangle that
shares two vertices with the current triangle being examined. By re-
quiring that two vertices are shared rather than one, this reduces the
likelihood that adjacent leaves or branches will inadvertently be
merged into a common group. The algorithm begins by iterating over
each triangle in the triangulated set. The first triangle is assigned a fill
group identifier of “0”. For each triangle, any neighboring connected
triangles are determined. If any connected triangles exist, each con-
nected triangle is added to the current fill group by assigning it the
current group identifier, and the neighbors of each connected triangle
are examined in a recursive manner. The recursion halts when there are
no connected triangles that have not yet been added to the current fill
group. In this case, the current fill group has been completed, and the
fill group identifier is increased by one. The original iteration over
triangles proceeds, where triangles that have already been assigned to a
fill group are skipped. Once the iteration is completed, all possible
triangle groups have been formed (Fig. 2).

Triangle groups are filtered by their area to exclude very small or
large groups. If only one to a few small triangles are identified in a
single group, it is typically not desirable to allocate an entire leaf to this
group. These small groups are filtered by specifying a threshold value
for the minimum group surface area, below which groups are rejected.
Similarly a threshold value is specified for the maximum group surface
area, which is typically set to be much larger than the expected area of a
single leaf. The primary purpose of filtering large leaf groups is to re-
move outliers when calculating the characteristic leaf dimension (see
below).

Each continuous fill group is then replaced by a “prototype” leaf.
Although there are many ways a prototype leaf could be specified (e.g.,
a rectangle, a triangular mesh), this work used a PNG image to define
the leaf shape (Fig. 3). A leaf is specified by a planar rectangle, but a
portion of that rectangle is removed according to the transparency
channel of the PNG image (Bailey, 2018). The length and width of the
prototype are denoted by l and w, and the fraction of the total rectan-
gular area that is not transparent is the solid fraction s (Fig. 3).

There are three quantities that must be specified for each leaf: its
(x,y,z) position, size, and orientation. The position and average or-
ientation are readily available from the triangulation; the leaf is placed
at the location of the triangle group centroid and oriented in the di-
rection of the average triangle group normal. However, the size is more
difficult to determine, because only a relatively few number of leaves
on the outside of the plant in full view of the scanner will be completely
reconstructed by the triangulation. Most of the leaves are occluded to
some degree and will only be partially triangulated, and thus the area of
the fill groups will be less than the actual leaf area. One could perform
manual measurements of leaf size using a ruler to obtain representative
values for leaf sizes. The drawback of this method, aside from having to
perform manual measurements, is that leaf size can change with posi-
tion in the plant and thus specifying a single size value may not be
representative. The method used here involved considering only the
largest triangulated groups (e.g., 10 largest groups), and taking the
characteristic leaf length L to be the average of the square root of the
group areas. The spatial distribution of leaf size can be approximately
represented by dividing the plant into sub-volumes, and the largest
triangulation groups in each volume can be used to determine the re-
presentative leaf size for that particular volume. In order to specify the
dimension of a leaf from the characteristic leaf size L, we must specify a
leaf aspect ratio, which is the ratio r of the length of the leaf parallel (l)
to perpendicular (w) to the midrib. Given that ≡ =L a wls and r ≡
l/w, the leaf length l is equal to L r s/ , and w= l/r.

Fig. 2. “Flood-fill” grouping of triangles. A two-dimensional grid of scan points in θ–φ
space is shown, with “misses” denoted by open circles and “hits” denoted by filled circles.
Connected triangle groups are identified and assigned a group identifier. In the example
shown, four continuous triangle groups are formed, which are given identifiers of 0, 1, 2,
and 3.
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2.4. Backfilling occluded leaves

Direct leaf reconstruction based on the triangulation only represents
a subset of the total leaf area. The leaf area that is not triangulated
because it is occluded or because the triangulation failed must be re-
presented through other means. In the present method, the remaining
leaf area is reconstructed by backfilling leaves until the leaf area density
of the reconstructed plant matches that of the actual plant. The plant is
discretized into a grid of rectangular sub-volumes called voxels (see
Bailey and Mahaffee, 2017a), and LiDAR points are grouped by the
voxel in which they reside. The method described in detail by Bailey
and Mahaffee (2017a) can then be used to calculate the leaf area
density and leaf angle distribution of the actual plant for each voxel
using the LiDAR scan data. More precisely, it should be noted that the
method actually measures the area density of all plant matter including
branches. This method gives a relatively accurate measure of the total
surface area of plant matter within each voxel for the actual plant. It is
also straightforward to use the directly reconstructed leaves from
Section 2.3 to determine the amount of leaf area in each voxel resulting
from the direct reconstruction, as the area of each reconstructed leaf is
known. The difference between the total and directly reconstructed
area is the amount of leaf area that remains to be added through
backfilling.

The backfilling process begins by randomly choosing a directly re-
constructed leaf within a given voxel, which is duplicated and placed at
a random, uniformly distributed position within the voxel. This process
continues for each voxel until the reconstructed leaf area in the voxel
matches the “actual” leaf area. It is possible that too much leaf area
could have been added during the direct reconstruction, in which case
leaf area can be removed by randomly deleting leaves which we term
“thinning”. Based on this process, the resulting reconstructed leaf area
and leaf angle distribution should be consistent with that of the actual
plant for each voxel. This method is dispersive in that it tends to spread
out leaves in space. The larger the fraction of leaves that are directly
reconstructed, the less dispersive the reconstruction method becomes,
and the better the reconstructed tree will match the structure of the
actual tree.

2.5. Woody plant material

Several methods have been suggested by previous authors for the
reconstruction of woody plant material (e.g., Xu et al., 2007; Binney
and Sukhatme, 2009; Mèndez et al., 2016; Li et al., 2016). In this work,
we focus only on reconstructing leaves within the crown volume, and
present a simple method for reconstructing the main trunk similar to

that of Xu et al. (2007). The primary purpose of representing the main
trunk is simply to provide a visual reference for qualitative evaluation
of the reconstruction. A voxel is specified that contains the portion of
trunk to be reconstructed. Hit points within this voxel are triangulated,
and the flood-fill algorithm of Section 2.3 is applied. The largest fill
group is identified, which is assumed to correspond to the trunk. This
produces a triangular mesh that approximately reconstructs the portion
of the trunk visible from the scanner.

It should also be noted that it is possible that the reconstruction
algorithm for leaves could inadvertently identify branches as a leaf
group. Rather than attempting to filter out these relatively rare in-
stances, the algorithm is simply applied in the same way as for leaves,
and it is assumed that a reconstructed branch is a reasonable location to
place a leaf. This work focuses on trees in which the (visible) leaf area is
much larger than the woody area. For trees where the woody area is
substantial compared to the leaf area, LiDAR hit points corresponding
to woody material could be separated within the scan (Béland et al.,
2014), and a branch reconstruction algorithm could be applied separate
from the leaf reconstruction method presented in this work.

2.6. Multiple scan positions

To reconstruct an entire tree, scans from multiple locations sur-
rounding the tree are typically required and must be combined.
Generally, the instrumentation on-board the scanner for measuring
geographic position is not accurate enough to be used to merge multiple
scans (it provides only an estimate). Standard methods are available to
register multiple scans to a common global coordinate system, such as
the iterative closest point (ICP) method (Zhang, 1994), or methods that
use reflectors, checkerboards, spheres, or other common targets placed
within the scan. Many instruments also come with software developed
by the manufacturer that use proprietary algorithms.

The method for calculating the leaf area contained within each
voxel (Bailey and Mahaffee, 2017a) does not distinguish between dif-
ferent scan positions, thus aggregating multiple scans is straightfor-
ward. For any given ray direction, the probability that a ray intersects
vegetation, the leaf normal vector, and path length through the voxel
are simply added to running totals for all scans. The totals for all scan
points from all scan locations are used along with Beer's law to solve for
leaf area density within the voxel (Bailey and Mahaffee, 2017a). For the
leaf reconstruction procedure, the algorithm is applied on a scan-by-
scan basis, and reconstructed leaves from each scan are simply ag-
gregated together to form the reconstructed plant.

Fig. 3. Example of leaf prototype image. The solid portion of the image is colored, while the checkered portion of the image is considered transparent. The area of the solid portion is a,
and the area of the total image is A=wl, where w and l are respectively the width and length of the prototype. The fraction of the total image that is solid is s= a/A.
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3. Evaluation of method

3.1. Data collection and processing details

Scanning data was collected for a 5m tall Emerald Sunshine Elm
(Ulmus propinqua) located in Davis, California USA to demonstrate ap-
plication of the method and evaluate its performance. The tree was
scanned using a full-waveform Riegl VZ-1000 terrestrial LiDAR scanner
(RIEGL Laser Measurement Systems GmbH; Horn, Austria). The scanner
sends concentrated beams of radiation with a wavelength of 1550 nm in
a uniformly gridded pattern in spherical space, covering a range from
30° to 130° in the zenithal direction and 0 to 360° in the azimuthal
direction. The maximum scan resolution is about 41,000× 150,000
points in the zenithal× azimuthal directions. The beam diameter as it
leaves the instrument is approximately 7mm, which diverges at an
angle of approximately 0.3mrad, meaning that at 10m range the beam
diameter is roughly 8.5mm. The instrument can scan up to 122,000
points per second, with a range from 2.5 m up to approximately
350–450m at this scanning rate. The full-waveform LiDAR instrument
used can record multiple hit points per pulse, but the point cloud was
filtered to consider only the closest hit per pulse. The instrument was
equipped with an on-board digital camera (Nikon D810 36 Mega Pixel)
that was used to assign RGB color values to each scan point and obtain
images for visual comparison with reconstructions.

Four scans were performed at equally spaced intervals surrounding
the tree, which were automatically registered to a common coordinate
system using Riegl's proprietary RiSCAN Pro software. The scanner was
positioned on a tripod approximately 1.25m above the ground, and
approximately 5.5m from the trunk of the tree. This distance was
chosen because it was as close as possible to the tree such that the entire
tree was in view of the scanner and digital camera. A modest scan re-
solution of 2500× 4500 points (zenith× azimuth) was chosen. At
10m range, this meant that adjacent points on a surface orthogonal to
the beam direction were separated by roughly 3.5–7mm and 7–14mm
in the zenithal and azimuthal directions, respectively, depending on
beam zenithal angle. Given the chosen resolution, the scans took
roughly 2min to complete, with an additional 2–3min for GPS location
and collection of digital photographs. Scans were performed under very
low wind speed conditions to minimize leaf disturbances. The above
scanning configuration worked well for the particular application of
interest, but in general configurations are expected to be application-
dependent. Since point density effectively decreases with distance, trees
that are larger or further away will require a higher scanning density.
Additionally, very large or dense trees could require more scans, po-
tentially at multiple heights to ensure that all portions of the tree are in
view of the scanner.

Additionally, the size of 40 random leaves were measured to eval-
uate the performance of the method for determining the leaf dimen-
sions from the LiDAR data. The lengths of the leaves parallel and per-
pendicular to the midrib were measured and recorded for each of the 40
leaves. Admittedly, a robust sampling strategy was not used, and only
leaves within reach of the ground were measured. This is because only a
rough estimate of leaf size was desired in order to assess whether results
of the LiDAR method were at least reasonable. Alternatively, a more
robust quantification of errors in leaf dimension is presented in
Section 4.3 using synthetic data.

For processing the data, a uniformly spaced 3D grid of voxels was
overlaid on the tree, within which leaf area was calculated using the
method described above and by Bailey and Mahaffee (2017a). The tree
crown was divided into a 10× 10×10 grid of rectangular voxels, each
of size 0.5×0.5×0.4m3. In the triangulation methodology, triangles
were rejected if the length of any of their sides exceeded 5 cm, or if their
aspect ratio was greater than 10. In the flood-fill algorithm, triangle
groups were rejected if their total area was less than 1 cm2 or greater
than 200 cm2, which were chosen because they are much smaller or
larger than the expected area of a leaf. The maximum leaf area

threshold is relatively easy to specify since it is straightforward to es-
timate the maximum expected leaf area. Understanding the minimum
leaf area threshold is slightly less straightforward. It may be undesirable
to specify a minimum area threshold that is too small because we ty-
pically want at least a few connected triangles for each leaf in order to
have confidence that the triangle group uniquely corresponds to a leaf.
We recommend a minimum threshold that is roughly an order of
magnitude smaller than the maximum area threshold. However, we
varied the minimum area threshold between 0.1 and 50 cm2 and found
very little impact on the resulting tree reconstructions. Using tighter
area thresholds generally results in slightly less directly reconstructed
leaf area, but the overall distribution of leaf area and orientation re-
mains the same.

3.2. Generation of synthetic scanning data

Quantitative evaluation of LiDAR data processing methods is ex-
tremely difficult when applied to large, dense trees, since there is ty-
pically no “gold standard” measurement against which to compare.
Before proceeding to the application of the method under field condi-
tions, an alternative approach is presented that uses simulated or
“synthetic” LiDAR data in which the exact vegetation structure is
known (see also Côté et al., 2009; Mèndez et al., 2013; Raumonen et al.,
2013; Bailey and Mahaffee, 2017a,b). This approach was adopted to
test the plant reconstruction method's ability to reproduce the dis-
tribution of leaf area, orientation, and characteristic size. Admittedly,
this method also has its drawbacks, namely that it is for an idealized
case. Thus, it clearly does not replace the need to perform some type of
field validation, but represents a powerful tool for algorithm testing and
evaluation.

The synthetic LiDAR data was produced by performing a ray-tracing
simulation that mimics the actual LiDAR scanning procedure described
above in Section 3.1. In short, a model or “reference” tree was created
based on the architectural model of Weber and Penn (1995), which
specifies the position of the trunk, branches, and leaves. The trunk and
branches were made up of a mesh of triangular elements, and the leaves
were rectangular transparency masks with zero thickness (see Fig. 3) of
size 6×20 cm2 and a solid fraction s=0.62. The overall tree was
roughly 7.5 m tall with a crown diameter of about 5.5m, and had
branches with a diameter ranging from 0.36m at the trunk base to zero
at the branch tips. The woody structure of the tree was made up of
about 77,000 triangles, and the tree had about 30,000 leaves. Leaf or-
ientations were specified as described in Weber and Penn (1995), where
leaves tend to rotate around the axial direction of the branches, which
leads to interesting non-uniform angle distributions (see Figs. 8 and 9).
Rays were launched from each of the four simulated scanner locations
in a spherical pattern approximately matching that of an actual LiDAR
scan. Ray-object intersection tests were performed to determine the
(x,y,z) location of the closest intersection point (Suffern, 2007). Note
that for simplicity it was assumed that a ray had an infinitely small
diameter that maintains 100% of the emitted intensity, which is not
true for an actual LiDAR beam. The resulting field of (x,y,z) intersection
points was taken to be an approximation of an actual LiDAR scan, and
was used to run the reconstruction methodology. For the simulated tree
case, the voxel grid size was slightly different than that of the real tree
because the tree crowns were slightly different sizes (but still consisted
of 10× 10×10 total voxels). For this case, the voxels had a size of
0.55×0.55×0.65m3. On average, each voxel contained about 30
leaves.

3.3. Error quantification

Errors between exact and simulated data were quantified using
three standard metrics: the index of agreement (Willmott, 1981, 1982),
root-mean-squared error (RMSE), and mean bias. The index of agree-
ment is defined as
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4. Evaluation using synthetic scanning data

4.1. Visualization

The visualizations shown in Fig. 4 provide a means for performing a
qualitative evaluation of the reconstruction method using the synthetic
scanning data. Overall, the reconstruction (Fig. 4b,d) appears visually
reasonable in comparison with the reference tree (Fig. 4a,c), and re-
produces the general tree structure. Clearly, the reconstruction does not
produce an exact replica of the reference tree nor is it intended to do so.
As mentioned previously, the reconstruction method is dispersive,
meaning that it tends to spread out leaves and diminish structure. As a
result, the reconstructed tree has lost some branch and clumping
structure compared to the reference tree. The sub-voxel-scale structure
that is present is primarily due to directly reconstructed leaves, which
are shown in Fig. 5.

Fig. 4. Visualization of (a, c) computer-generated or “reference” tree, and (b, d) reconstruction of the reference tree based on simulated LiDAR scanning data for two opposing viewing
angles.
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4.2. Leaf area

A more quantitative evaluation of the reconstruction methodology
can be conducted by performing a voxel-by-voxel comparison of leaf
area between the reconstructed and reference trees (Fig. 6a). Since the
exact amount of leaf area in each voxel is known from the reference
tree, this provides a means for quantifying the error in measured leaf
area. It should be noted that this exercise is primarily a test of the leaf
area measurement method of Bailey and Mahaffee (2017a), as this is
what determines how much total leaf area should be produced within
each voxel.

The index of agreement between the reference and reconstructed
total leaf area within the 1000 voxels was 94.2%, and the RMSE was
0.174m2 (Fig. 6a), indicating reasonably good overall agreement.
There is a notable amount of scatter in the LiDAR measurements, par-
ticularly as leaf area density becomes large. There is a small overall
negative bias in the estimated leaf area (−0.058m2), meaning that the
LiDAR methodology tended to slightly underestimate the actual amount
of total leaf area. Above roughly 1m2 of leaves per voxel the scatter
becomes increasingly apparent and there is more consistent under
prediction. This is likely because the LiDAR inversion methodology
used to measure leaf area loses sensitivity as leaf area index along the

beam path becomes large (which occurs when either leaf area density
or voxel size becomes large). The inversion for leaf area is based on the
LiDAR's measurement of the probability that a beam is intercepted by
leaves within a given voxel, and as leaf area index along the beam's path
becomes large there is little difference in this probability as leaf area
varies. There was no clear location in the tree where the relative error
in leaf area tended to be largest, but the absolute error was largest
wherever leaf area happened to be largest.

Fig. 7 shows the relative amount of leaf area that was directly re-
constructed on average. The majority of voxels required backfilling to
reach the measured leaf area. Some voxels required that more than
100% of the directly reconstructed leaf area be removed via thinning to
match the measured leaf area.

4.3. Characteristic leaf dimension

The ability of the reconstruction method to determine the char-
acteristic leaf size within a given voxel was evaluated in Fig. 6b. The
leaf dimension in the reference tree was constant at 8.7 cm. The re-
construction method slightly skews to the left of the actual leaf di-
mension, which is expected since the leaf is rarely 100% triangulated.
However, the majority of the reconstructed leaves are near the actual

Fig. 5. Visualization of the triangulated leaf groups used to determine the locations of directly reconstructed leaves in the reconstruction shown in Fig. 4b, d for two opposing viewing
angles. Each independent fill group is given a unique color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Comparison of exact values of leaf area (a) and leaf
dimension (b) with values obtained from the synthetic
LiDAR reconstruction for each voxel. In (a), the diagonal
line denotes perfect agreement, and overall agreement is
quantified by the index of agreement d, the root-mean-
squared error (RMSE), and the mean bias. In (b), the dashed
vertical line denotes the (constant) exact value, and bars
give a histogram of predicted values over all voxels. Note
that the characteristic leaf dimension L was defined as a ,
where a is the leaf surface area.
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leaf dimension, and the actual mean bias is small at −4.8mm. The
overall RMSE for all reconstructed leaves was 2.0 cm.

4.4. Leaf orientation

To make it feasible to plot voxel leaf angle probability density
functions (PDFs), the 10× 10×10 voxel grid was downsampled to a
2× 2×2 grid by simply aggregating neighboring voxels together.
Probability density functions are plotted for the leaf inclination (Fig. 8)
and azimuthal (Fig. 9) angles within each of these 8 total grid voxels.
The exact PDFs from the reference tree are compared against PDFs for
the reconstructed tree. PDFs were calculated following the procedure
used in Bailey and Mahaffee (2017b), which can be consulted for

further details. Overall, the reconstruction is able to qualitatively re-
produce the general trends in the inclination and azimuthal angle PDFs.
There are some deviations between the reference and reconstructed
PDFs due to inadequate sampling of the true PDF, but overall agree-
ment appears visually reasonable. A two sample Kolmogorov-Smirnov
test was performed to quantitatively compare the exact and re-
constructed leaf angle distributions for each voxel. The distributions for
every voxel passed the Kolmogorov-Smirnov test at a 5% confidence
interval for both the leaf inclination and azimuthal angle PDFs.

5. Evaluation using field data

5.1. Visualization

Unfortunately, the type of data used above to perform quantitative
evaluation of the method is not readily available in the field. Therefore,
agreement between the actual (field) and reconstructed trees was as-
sessed based on visual comparisons. In order to do so, the reconstructed
trees must be visualized in a manner that is consistent with the way in
which the scanner's digital camera perceives the actual tree, which was
not an issue in the previous section since identical visualization tech-
niques could be applied for the actual and reconstructed trees. In
plotting geometric elements associated with the reconstructed trees, a
standard rectangular perspective transformation was applied to the
geometry that approximately matched that of the camera lens (Shirley
and Morley, 2003). The appropriate field of view for the camera lens
was determined through trial-and-error by comparing visualizations of
the LiDAR point cloud and photographs. As a result, there is some error
in the visualization comparisons due to the camera model used to vi-
sualize the reconstructed trees.

Fig. 10 shows a visualization of the tree triangulation, with each fill
group given a unique color. Based on visual inspection, the method
appears to perform reasonably well in terms of identifying individual
leaves. Because of the limited number of distinct colors in the pseu-
docolor mapping, it can be difficult in some instances to determine

Fig. 7. Histogram of the fraction of leaf area within each voxel that was directly re-
constructed. Bars to the left of the vertical dotted line correspond to voxels that had less
reconstructed leaf area than actual leaf area, and thus required backfilling. Bars to the
right of the vertical dotted line correspond to voxels that had more reconstructed leaf area
than actual leaf area, and thus required thinning.

Fig. 8. Probability density functions (PDFs) of leaf inclination angle (θL) with a discrete bin size of 10° for eight different leaf zones. The solid black lines correspond to the inclination
angle of N total leaves from the tree reconstruction, and the dashed red lines correspond to the inclination angle of Nr total leaves from the reference tree (exact). The leaf zones were
determined by downsampling the 10×10×10 voxel grid to a grid of 2×2×2 voxels. The top and bottom rows of plots correspond to the top and bottom half of the tree crown,
respectively, and each column of plots corresponds to a different azimuthal zone of the tree. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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whether neighboring leaves are in the same fill group or are actually
slightly different colors. There appear to be instances in which neigh-
boring leaves that are very close together are inadvertently placed into
the same triangle group. However, these occurrences seem to be rela-
tively minimal and still offer reasonable guesses as to where leaves
should be placed.

A visualization of the resulting reconstruction as compared with
actual photograph and point cloud data is shown in Fig. 11. Qualitative
comparison between the actual and reconstructed trees shows close
agreement. Individual shoot structures are clearly replicated by the
reconstruction. Many individual leaves are closely represented by the
reconstructed leaves. Fig. 10 shows which leaves were a result of the
direct reconstruction, and indicates that the algorithm is able to identify
a large number of individual leaves. The majority of the grid voxels had
less than 50% of the leaf area directly reconstructed, and very few

required thinning (Fig. 12b). Leaf size prediction seemed to be rea-
sonable (Fig. 12a) and resulted in a visually consistent tree re-
construction.

6. Discussion and conclusions

A semi-direct method was developed and tested that uses terrestrial
LiDAR scanning data to reconstruct the architecture of large plants such
as trees. A summary of the overall reconstruction algorithm is presented
in Fig. 13. The method is termed semi-direct because it seeks to directly
reconstruct as many leaves as possible that are in view of the scanner.
The resulting direct reconstruction typically represents only a fraction
of the total leaf area of the plant. To reconstruct hidden or occluded leaf
area, a statistical backfilling procedure was employed in which leaves
were added (or removed) such that the overall leaf area and leaf

Fig. 9. Probability density functions (PDFs) of leaf azimuthal angle (φL) with a discrete bin size of 40° for eight different leaf zones. The solid black lines correspond to the azimuthal
angle of N total leaves from the tree reconstruction, and the dashed red lines correspond to the azimuthal angle of Nr total leaves from the reference tree (exact). The leaf zones were
determined by downsampling the 10×10×10 voxel grid to a grid of 2×2×2 voxels. The top and bottom rows of plots correspond to the top and bottom half of the tree crown,
respectively, and each column of plots corresponds to a different azimuthal zone of the tree. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 10. Visualization of the triangulated leaf groups used
to determine the locations of directly reconstructed leaves
in the reconstruction shown in Fig. 11b, d (actual elm tree)
for two opposing viewpoints. Each independent leaf fill
group is given a unique color. (For interpretation of the
references to color in this figure legend, the reader is re-
ferred to the web version of this article.)
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Fig. 11. Visual comparison of actual elm tree photograph (a, c), and reconstructed elm tree (b, d) for two opposing viewpoints.

Fig. 12. Histogram of characteristic leaf dimension in each grid voxel for the reconstructed tree in Fig. 11b, d (a), and histogram of the fraction of directly reconstructed leaf area within
each grid voxel for the reconstructed tree in Fig. 11b, d (b).
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orientation distributions matched that of the actual plant. This was
accomplished by using the methods developed by Bailey and Mahaffee
(2017a,b) to measure the leaf angle and leaf area distributions within a
user-defined grid of voxels, then adding leaves such that they are
consistent with these measured distributions. Thus, the resulting re-
construction is not an exact replica of the plant, rather it is a statistical
reconstruction that is consistent with the actual tree at the scale of the
voxel grid at that particular instant in time.

In contrast with other methods that rely on the tree branch structure
as a skeleton for reconstruction (e.g., Xu et al., 2007; Côté et al., 2009),
the present method does not utilize branch structure in the re-
construction of leaves. As a result, the method is applicable to dense
plants where little to no wood area is visible from the scanner. The leaf
density does, however, affect the quality of the reconstruction. For re-
latively sparse plants, a larger fraction of leaves are visible to the
scanner, and thus the direct portion of the reconstruction represents a
larger fraction of the total reconstructed area, which preserves more of
the vegetation structure. For dense plants, much of the leaf area is oc-
cluded from view of the scanner, and therefore less leaf area is directly
reconstructed. Regardless, the reconstructed leaf area and orientation is
still consistent with the actual plant at the voxel scale to within the
accuracy that the instrument can measure leaf area and orientation for
each voxel. A drawback of the present method is that it is dispersive,
meaning that it tends to diminish plant structure by spreading out
leaves.

Dense vegetation or large voxel sizes have the effect of diminishing
the accuracy of the measurement of leaf area. This work suggested that
voxels with denser leaves tended to have higher errors in predicted leaf
area (Section 4.2). Although not explored in detail, it appeared that for

the case examined in this work, errors started to become significant
when the voxels contained greater than about 1m2 of leaves (note that
these values may be case-specific). Future work is needed to more
thoroughly examine how various factors affect errors in the leaf area
measurement method, as such an exercise was beyond the scope of this
work which focused primarily on the reconstruction technique. Small
voxels have an additional advantage that they reduce the tendency of
the method to disperse or spread out leaves. However, using too small
of voxels could become problematic if there are not enough ray samples
per voxel.

Aside from the voxel size, there are relatively few tunable para-
meters in the reconstruction methodology itself. To utilize the trian-
gulation algorithm, the user must specify the maximum allowable tri-
angle dimension. This value is typically easy to specify because results
have shown little sensitivity over a wide range, as long as this dimen-
sion is much larger than the distance between adjacent hit points and
much smaller than the typical distance between adjacent leaves (Bailey
and Mahaffee, 2017b). The reconstruction algorithm requires the spe-
cification of threshold values for the minimum and maximum allowable
surface area of a triangulated leaf “group”. Regardless of how these
threshold values are specified, the reconstructed tree will still be con-
sistent with the actual tree at the voxel scale in terms of the leaf area
and orientation distributions.

The results of this work have important implications in terms of the
ability to provide accurate inputs to detailed biophysical models and
analyses. Models are now able to represent plant-related processes at
the leaf scale (e.g., Vos et al., 2010; Sarlikioti et al., 2011; Bailey, 2018),
and combining such models with consistent, leaf-level plant re-
constructions provides a means by which these processes can be scaled
from leaf-to-tree-to-canopy without the need for often questionable
assumptions of homogeneity. In addition to modeling-related efforts,
reconstruction data can aid in studies seeking to understand relations
between plant structure and function (Meinzer et al., 2011). In order to
perform terrestrial scans of entire canopies, scanning throughput needs
to be increased. Scanners can be placed on easily movable or autono-
mous platforms to increase throughput (e.g., Kukko et al., 2012).
However, it is important to note that the data processing methods
utilized in this work require a stationary sensing platform for the
duration of the scan. This also makes utilization of aerial platforms a
challenge. At the scan resolution used in this work, scans take only a
couple of minutes each (if color photographs are not also collected) and
can potentially scan several surrounding trees simultaneously. Canopy-
scale reconstruction of very large trees (> 10m) is likely to introduce
additional challenges such as requiring higher scan resolution and high
occlusion toward the top of the canopy.
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